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An exactly solvable model is used to obtain the response to confinement of the cluster distribution of linear
aggregation. A direct relevance to simulation studies of linear self-assembly in discotic solutions and in peptide
tape formation is proposed. The mapping predicts, for typical simulation procedures, that a finite reservoir of
solute leads to a dramatic departure from isodesmic chemical equilibria for solute-solute interaction strengths
higher than only a few kBT.
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In this Rapid Communication “linear self-assembly” de-
notes the formation of chainlike aggregates via chemical
equilibria in solvent. Examples include solutions of disk-
shaped surfactants �1�, the formation of peptide tapes �2�,
and some aspects of exotic systems such as wormlike mi-
celles �3� and filamentous networks �4�. In the thermody-
namic limit linear self-assembly reduces to isodesmic chemi-
cal equilibria and hence an exponentially decaying cluster
distribution. Simulation studies are typically carried out with
a finite reservoir of solute, which can dramatically affect the
observed cluster distribution �5�. Also, periodic boundary
conditions �PBCS� can stabilize aggregates of infinite length.
This Rapid Communication proposes a mapping of the
finite-size dependence of the cluster distribution of linear
self-assembly to the exact cluster distribution of the one-
dimensional lattice-gas �LG� model under confinement.

A wide range of issues of importance to physical chemis-
try are readily identified and made accessible via Widom’s
potential distribution theorem �PDT� applied to the LG
model in the grand ensemble �6�:

��x�/�1 − ��x�� = ze−�vext�x��e−���x��c. �1�

Here, ��x� is the density profile at position x, � denotes the
inverse temperature T in units of Boltzmann’s constant kB,
and vext�x� and ��x� are energies defined by an external field
and by the interparticle interactions felt by a test particle
placed at position x, respectively. The subscript c on the
conditional average reminds us that there must already be an
empty cell fixed at position x to accommodate the test par-
ticle �in the LG model this is a probability 1−��x� represent-
ing repulsive interactions with the test particle�. The symbol
z denotes the activity e�� with � the chemical potential of
solute and it is also convenient to introduce the quantity a
�e��−1 where � is the attractive well-depth of the nearest-
neighbor LG model. We are interested in applying the PDT
to confined systems of “width” L. For example, consider
evaluating the cluster distribution in PBCS; i.e., we seek cn
the probability of finding a cluster of length n with a speci-
fied monomer occupying an arbitrary position �in PBCS all
cells are equivalent�. We could choose any monomer, but I
shall always first consider the far left member of an aggre-
gate and then build up the aggregate by adding additional
monomers to the right �conditional probability ensures that

any other method of creating the aggregate must be math-
ematically equivalent�. Note also that the cell size is the unit
of length, so that the density and all cluster densities reduce
to probabilities lying between 0 and 1. The probability of
finding a solute in the first cell is the density �L of our PBCS
system of width L. However, this is not the “cluster” prob-
ability c1, since an isolated monomer must be surrounded by
solvent �which I shall equally refer to as empty cells�. In-
stead, we must write

c1 = �L�1 − YL−1��1 − ỸL−2� , �2�

where a subscript containing L will always denote the
“width” of the system to which a quantity belongs. Namely,
by inserting a solute at any position in PBCS one automati-
cally creates a “pore” of width L−1 defined by an external
field generated by solute “walls” fixed at either end. This
class of pore �or confined system� is labeled �a� in Fig. 1.
Isolating the monomer means that we must then insist that
the cell immediately to the right of the left-hand wall is
empty of solute. This is the second factor on the right of Eq.
�2�; with Y denoting the density next to a filled cell in a
symmetric pore. In PBCS the empty cell to the left of the
monomer is also an empty cell on the far side of a pore,
which is now one unit shorter and of the asymmetric form
depicted in �c� of Fig. 1. Hence the final factor in Eq. �2�; a
tilde will always be used to denote a density next to a wall of
an asymmetric pore. For true clusters �n�1�, we follow an
identical process but add n−1 additional solutes successively
to the right of the previous solute, before capping the cluster
with two solvent cells. Thus

FIG. 1. Boundary conditions for confined one-dimensional LG
models in the grand canonical ensemble. �a� Solute walls. �b� Sol-
vent walls. �c� Asymmetrical boundary conditions.
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cn = �LYL−1YL−2 ¯ YL−n+1�1 − YL−n��1 − ỸL−n−1�,

1 � n � L − 1; �3�

when n=L−1 the final factor is dropped and finally for n
=L both solvent-cell factors are absent. In PBCS, cL is a
special case because it corresponds to a unique state rather
than L states. In PBCS one should therefore check a calcu-
lated cluster distribution against the sum rule

1 =
1

�L
�cL + 	

n=1

L−1

ncn
 . �4�

Now note that the PDT can be regarded as an expression for
the density �L�T ,��, within the same PBCS framework, pro-
vided we also include confined systems of class �b� of Fig. 1:

�L/�1 − �L� = z��1 − �L−1
w ��1 − �L−2

w � + 2�1 + a��L−1
w �1 − �̃L−2

w �

+ �1 + a�2�L−1
w �̃L−2

w � , �5�

where hereinafter I shall label a density next to a solvent wall
with a superscript w.

To evaluate all of the above-defined densities and hence
the cluster distribution, one can simply apply the PDT to
cells adjacent to the pore walls �at fixed T ,� or equivalently,
fixed a ,z�. From the structure of the PDT �1� it is convenient
to work with quantities � / �1−��� f; i.e., fm�Ym / �1−Ym�
and similarly for f̃m, fm

w, f̃m
w for the various pores of width m.

Starting with the limiting case m=1, where there are no
many-body contributions to the PDT, just external field con-

tributions from the pore walls, we have f1
w=z, f̃1= f̃1

w=z�1
+a�, f1=z�1+a�2. Increasing the pore “widths” one arrives
straightforwardly at the following formulas:

fm
w =

z�1 + �1 + a�fm−1
w �

1 + fm−1
w , m � 1, �6�

fm =
z�1 + a�2�1 + fm−1�

1 + a + fm−1
, m � 1, �7�

f̃m = �1 + a�fm
w , �8�

f̃m
w = fm/�1 + a� . �9�

However, we have not as yet made sufficient use of condi-
tional probability. For example, the middle term on the right
of Eq. �5� has been expressed in terms of a solvent cell
surrounded by a solute to the right and another solvent to the
left �in PBCS�, which could equally have been constructed in
reverse order; i.e., �L−1

w �1− �̃L−2
w �= �1−�L−1

w ��L−2
w . When com-

bined with the first and last of the above relations, this results
in the sum rule

fm = �1 + a�
z�1 + a� − 1 +
z

fm
w� , �10�

which can also be readily proved directly from Eqs. �6� and
�7� by induction and holds even at m=1. Thus there is only
one independent pore density, which is conveniently taken to

be fm
w so that Eq. �10� replaces the need to make explicit use

of the second recursion relation �7�. Finally, one can use the
above to confirm that at z=1 / �1+a� the density in PBCS is
�L=1 /2 for all values of L; which is a direct expression of
the underlying Ising symmetry �corresponding to zero mag-
netic field�.

Let us now turn to the main proposed application to com-
puter simulation studies of linear self-assembly in three-
dimensional canonical ensembles; namely, the effect on the
cluster distribution of using a finite number of solute par-
ticles. Here, I shall make the ansatz that the activity z is
controlled by the solute-solvent interactions in the three-
dimensional system surrounding the aggregates and that the
latter can be treated as if they were all lying along a line
that ends in solvent “walls.” This mapping of the one-
dimensional LG model in the grand ensemble, to the three-
dimensional simulation system in the canonical ensemble, is
an obvious extension of the implicit solvent model. The map-
ping requires us to calculate the cluster distribution in a
“pore” of class �b� of Fig. 1. The first thing to note is that the
probability of finding a cluster of size n occupying a given
site is now a function of the position of this cluster within the
finite pore. That is, we have to find cn�x�, where it remains
convenient to continue our practice of defining the position x
of the aggregate to be the cell occupied by the solute at the
far left end of the aggregate. The first requirement is to cal-
culate the density profile �L�x� or alternatively fL�x� as ob-
tained directly from the PDT. In the cells neighboring one of
the solvent walls, x=1 and L, this quantity has already been
defined as fL

w. For other values of x, the PDT in the pore
evaluates to

fL�x� = z��1 − �L−x
w ��1 − �x−1

w � + �1 + a��L−x
w �1 − �x−1

w �

+ �1 + a��1 − �L−x
w ��x−1

w + �1 + a�2�L−x
w �x−1

w � ,

1 � x � L , �11�

which is fully determined by the first recursion relation �6�.
Note that this formula and Eq. �5� apply to cases for which
L	3. The cluster distribution profiles can now be calculated
from the PDT, proceeding exactly as we did for PBCS, but
noting that an aggregate of length n cannot fit into the con-
fined system unless x
L−n+1. The general result is

cn�x� =
fL�x�

1 + fL�x�
1

1 + f̃ x−1

f̃ L−x

1 + f̃ L−x

f̃L−x−1

1 + f̃ L−x−1

¯

f̃ L−x−n+2

1 + f̃ L−x−n+2

1

1 + f̃ L−x−n+1

;

1 � n � L; 1 � x � L − n + 1. �12�

The special cases that have to be added to this set are

c1�1� = c1�L� =
fL

w

1 + fL
w

1

1 + f̃ L−1

, �13�
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c1�1 � x � L� =
fL�x�

1 + fL�x�
1

1 + f̃ x−1

1

1 + f̃ L−x

, �14�

c1�n�L�1� = c1�n�L�L + 1 − n�

=
fL

w

1 + fL
w

f̃L−1

1 + f̃ L−1

¯

f̃ L−n+1

1 + f̃ L−n+1

1

1 + f̃ L−n

, �15�

cL�1� =
fL

w

1 + fL
w

f̃L−1

1 + f̃ L−1

¯

f̃1

1 + f̃1

. �16�

Note that the symmetry of the confined system is a good first
check on the derivation of these relations. The quantity of
immediate physical relevance is the average probability of
finding an aggregate of size n anywhere in the confined
system:

c̄n �
1

L
	
x=1

L−n+1

cn�x� , �17�

which can be compared directly with the cluster distribution
in the thermodynamic limit. A stringent test of the above
formulas is to check them against the average density of the
confined system:

	
n=1

L

nc̄n =
1

L
	
x=1

L

�L�x� . �18�

In the finite size systems with solvent walls, the density
and cluster distribution profiles reveal two, apparently re-
lated, relationships with well-known colloidal physics.
Namely, solute avoids contact with the walls leaving an in-

terfacial solvent-rich region, while in contrast the cluster dis-
tribution profiles are peaked at the walls �see Fig. 2�. At first
sight this may appear contradictory, but one should recall
that a cluster at say the left boundary cannot move any fur-
ther to the left, so that its contribution to the density profile at
the wall is reduced by a factor of n over the contribution the
same cluster would give to the bulk density in the thermo-
dynamic limit. The avoidance of solute from the boundary
walls is directly related to the physics of drying �wetting by

Density and Cluster Profiles
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FIG. 2. Density and cluster distribution profiles for the finite-
size LG model with solvent-wall boundary conditions; at solute
activity z=3 /16, solute-solute attractive well-depth �=2.2kBT, and
system size L=25. Symbols denote the density profile, reduced by a
factor of 10, with the horizontal line denoting the bulk value �L
=��. The curves show cluster distribution profiles cn�x� for 1
n

L. The larger the cluster length n, the smaller the effective value
of L available to the cluster; the horizontal line centered on the
ordinate denotes cL�1�.

FIG. 3. Cluster probability distributions for the finite-size LG
model with solvent-wall boundary conditions. In all cases the solute
activity is fixed at z=3 /16 and the system size is L=25. �a� c̄n

versus n at solute-solute attractive well depth �=1.573kBT. �b� 10c̄n

at �=2.573kBT. �c� 2c̄n at �=3.573kBT.

FIG. 4. Cluster probability “transition” lines at a solute activity
of z=3 /16. �a� The solute-solute well depth for crossover cluster
distributions c̄L= c̄1 as a function of system size, from one-
dimensional LG systems confined by solvent walls �class Fig. 1�b��.
Figure 3�b� corresponds to the value at L=25. Above the transition
line the cluster distribution is dominated by the largest aggregates
�see Fig. 3�c�� while below the line the distribution of aggregates
tends rapidly to the isodesmic form �see Fig. 3�a��. �b� The corre-
sponding transition line under periodic boundary conditions; cL

=c1.
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vapor at the interface between a hard-wall and saturated liq-
uid� because the implicit solvent model with solvent walls
maps onto a single-component model with hard-wall bound-
aries. The fact that clusters prefer to sit at a hard wall is
known in colloidal physics as the depletion effect. In particu-
lar, note that a cluster benefits from being next to say the left
solvent wall because this removes the need to accommodate
a solvent cell on the left of the cluster that is otherwise
needed to separate it from the remaining solute. These drying
and depletion effects decay smoothly from the boundaries,
with apparently the same decay length, typically over about
five solute diameters �LG cells�. This is because there are no
phase transitions in the one-dimensional Ising/LG model and
so complete drying is unreachable. Figure 3 displays three
representative cluster distributions in systems of “width” 25
bounded by solvent walls. Each system has the same solute
chemical potential, chosen to map onto a typical liquid state
of a simulation model. All that is varied is the nearest-
neighbor attractive well depth or, equivalently, the tempera-
ture. In case �a�, high temperature, the cluster distribution in
the confined system is very close to that in the thermody-
namic limit L→� and so displays the expected exponential
character. In case �b� the temperature is low enough so that in
an unconfined system there would be significant contribu-
tions from aggregate lengths out to about 100. Here, the
confined system has responded by favoring both small clus-
ters and large clusters, over intermediate length aggregates.
The last example, �c�, is at an even lower temperature where
the cluster distribution would prefer to decay exponentially

out to around aggregates of length 1000, but cannot because
it is forced into a pore of width 25. Here, the system re-
sponds by favoring the largest possible aggregates over all
others, the opposite to the behavior in the thermodynamic
limit where the cluster distribution is isodesmic.

An interesting aspect of Fig. 3 is that case �b� corresponds
to a quite moderate solute-solute attractive well depth � and
the other two distributions belong to systems that are identi-
cal to �b� apart from � being greater or lower by exactly kBT,
respectively. This rapid “transition” between two contrasting
cluster distributions �a� and �c� has arisen because linear self-
assembly is extremely sensitive to temperature in the region
of kBT�� /2. In this physically relevant regime, doubling the
attraction strength increases the aggregation number in the
thermodynamic limit from small to huge. The curve labeled
�a� in Fig. 4 plots this “transition” as a function of confine-
ment, with Fig. 3�b� belonging to L=25, and illustrates that
this dramatic physics will always be relevant. Figure 4�b�
shows a similar transition line for finite-size systems with
periodic boundary conditions. In both discotic and peptide
solutions, especially the latter where typically � receives con-
tributions from around 10 hydrogen bonds �2�, the simulation
will often correspond to states well above these transition
lines. In which case, the one-dimensional LG model predicts
that instead of observing the equilibrated exponential cluster
distribution appropriate to the thermodynamic limit, one
would instead observe a state of almost total polymerization
�5�.
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